References

For more details and further information on continuous-variable quantum computation and Gaussian quantum information, please see [33][34][35][36].

1

Joonsuk Huh, Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean, and Alán Aspuru-Guzik. Boson sampling for molecular vibronic spectra. Nature Photonics, 9(9):615–620, Aug 2015. URL: http://dx.doi.org/10.1038/nphoton.2015.153, doi:10.1038/nphoton.2015.153.

2

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.

3

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proceedings of the 29th International Conference on Machine Learning. 2012.

4

Michel Gendreau, Patrick Soriano, and Louis Salvail. Solving the maximum clique problem using a tabu search approach. Annals of Operations Research, 41(4):385–403, 1993.

5

Juan Miguel Arrazola and Thomas R Bromley. Using gaussian boson sampling to find dense subgraphs. Physical Review Letters, 121(3):030503, 2018.

6

Soran Jahangiri, Juan Miguel Arrazola, Nicolás Quesada, and Alain Delgado. Quantum algorithm for simulating molecular vibrational excitations. arXiv:2006.13339, 2020.

7

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of 166 billion organic small molecules in the chemical universe database gdb-17. Journal of Chemical Information and Modeling, 52(11):2864–2875, 2012.

8

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):140022, 2014.

9

Leonardo Banchi, Mark Fingerhuth, Tomas Babej, Juan Miguel Arrazola, and others. Molecular docking with gaussian boson sampling. arXiv:1902.00462, 2019.

10

Chris Sparrow, Enrique Martín-López, Nicola Maraviglia, Alex Neville, Christopher Harrold, Jacques Carolan, Yogesh N. Joglekar, Toshikazu Hashimoto, Nobuyuki Matsuda, Jeremy L. O’Brien, David P. Tew, and Anthony Laing. Simulating the vibrational quantum dynamics of molecules using photonics. Nature, 557:660–667, 2018.

11

Christoph R. Jacob and Markus Reiher. Localizing normal modes in large molecules. J. Chem. Phys., 130(8):084106, 2009.

12

Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, Steven T. Elbert, Mark S. Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun Su, Theresa L. Windus, Michel Dupuis, and John A. Montgomery Jr. General atomic and molecular electronic structure system. J. Comput. Chem., 14(11):1347–1363, 1993.

13

Nicolás Quesada. Franck-condon factors by counting perfect matchings of graphs with loops. The Journal of chemical physics, 150(16):164113, 2019.

14

Wayne Pullan and Holger H Hoos. Dynamic local search for the maximum clique problem. Journal of Artificial Intelligence Research, 25:159–185, 2006.

15

Wayne Pullan. Phased local search for the maximum clique problem. Journal of Combinatorial Optimization, 12(3):303–323, 2006.

16

Soran Jahangiri, Juan Miguel Arrazola, Nicolás Quesada, and Nathan Killoran. Point processes with gaussian boson sampling. 2019. arXiv:1906.11972.

17

Kamil Brádler, Pierre-Luc Dallaire-Demers, Patrick Rebentrost, Daiqin Su, and Christian Weedbrook. Gaussian boson sampling for perfect matchings of arbitrary graphs. Physical Review A, 98(3):032310, 2018.

18

Kamil Bradler, Shmuel Friedland, Josh Izaac, Nathan Killoran, and Daiqin Su. Graph isomorphism and gaussian boson sampling. arXiv preprint arXiv:1810.10644, 2018.

19

Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt. A quantum hardware-induced graph kernel based on gaussian boson sampling. arXiv preprint arXiv:1905.12646, 2019.

20

Kamil Bradler, Robert Israel, Maria Schuld, and Daiqin Su. A duality at the heart of gaussian boson sampling. arXiv preprint arXiv:1910.04022, 2019.

21

Jerome Kelleher and Barry O’Sullivan. Generating all partitions: a comparison of two encodings. arXiv preprint arXiv:0909.2331, 2009.

22

Leonardo Banchi, Nicolás Quesada, and Juan Miguel Arrazola. Training gaussian boson sampling distributions. arXiv:2004.04770, 2020.

23

Francesco Mezzadri. How to generate random matrices from the classical compact groups. ArXiv Mathematical Physics e-prints, Sep 2006. arXiv:math-ph/0609050.

24

William R Clements, Peter C Humphreys, Benjamin J Metcalf, W Steven Kolthammer, and Ian A Walsmley. Optimal design for universal multiport interferometers. Optica, 3(12):1460–1465, 2016. doi:10.1364/OPTICA.3.001460.

25

Gianfranco Cariolaro and Gianfranco Pierobon. Bloch-Messiah reduction of gaussian unitaries by Takagi factorization. Physical Review A, 94:062109, Dec 2016. doi:10.1103/PhysRevA.94.062109.

26

Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani. Experimental realization of any discrete unitary operator. Physical Review Letters, 73(1):58–61, Jul 1994. doi:10.1103/physrevlett.73.58.

27

K. E. Cahill and R. J. Glauber. Ordered expansions in boson amplitude operators. Physical Review, 177:1857–1881, Jan 1969. doi:10.1103/PhysRev.177.1857.

28

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders (eds.). NIST digital library of mathematical functions. Release 1.0.16 of 2017-09-18. [Online; accessed 2017-10-25]. URL: http://dlmf.nist.gov/.

29

M. S. Kim, W. Son, V. Bužek, and P. L. Knight. Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Physical Review A, 65:032323, Feb 2002. arXiv:quant-ph/0106136, doi:10.1103/PhysRevA.65.032323.

30

P Král. Displaced and squeezed Fock states. Journal of Modern Optics, 37(5):889–917, 1990. doi:10.1080/09500349014550941.

31

Gianfranco Cariolaro and Gianfranco Pierobon. Reexamination of Bloch-Messiah reduction. Physical Review A, 93:062115, Jun 2016. doi:10.1103/PhysRevA.93.062115.

32

Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open source software framework for quantum computing. Dec 2016. arXiv:1612.08091.

33

Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf, Timothy C. Ralph, Jeffrey H. Shapiro, and Seth Lloyd. Gaussian quantum information. Reviews of Modern Physics, 84(2):621–669, May 2012. arXiv:1110.3234, doi:10.1103/revmodphys.84.621.

34

Gerardo Adesso, Sammy Ragy, and Antony R. Lee. Continuous variable quantum information: gaussian states and beyond. Open Systems & Information Dynamics, 21(01n02):1440001, Jun 2014. doi:10.1142/s1230161214400010.

35

Alessio Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, 2017.

36

Alessandro Ferraro, Stefano Olivares, and Matteo GA Paris. Gaussian states in continuous variable quantum information. arXiv, 2005. arXiv:quant-ph/0503237.