sf.decompositions.sun_compact¶

sun_compact(U, rtol=1e-12, atol=1e-12)[source]

Recursive factorization of unitary transfomations.

Decomposes elements of $$\mathrm{SU}(n)$$ as a sequence of $$\mathrm{SU}(2)$$ transformations and entangling beamsplitters, see [24]. This sequence of $$\mathrm{SU}(2)$$ transformations can then be mapped to an operation on optical modes including two phase plates and one beam splitter.

This implementation is based on the authors’ code at github:glassnotes/Caspar.

Parameters
• U (array) – unitary matrix

• rtol (float) – relative tolerance used when checking if the matrix is unitary

• atol (float) – absolute tolerance used when checking if the matrix is unitary

Returns

Returns a list of operations with elements in the form (i,i+1), [a, b, g] where the (i,i+1) indicates the modes of an $$\mathrm{SU}(2)$$ transformation and [a, b, g] are the transformation parameters.

Return type

tuple[list[tuple,list], float]

Note that any unitary can be written in terms of an special unitary as

$U = e^{i \phi/n} S$

where $$S \in \mathrm{SU}(n)$$ and $$e^{i\phi} = \mathrm{det}\,U$$.

Here any $$S \in \mathrm{SU}(n)$$ is parametrized in terms of the Euler angles and written as

$\begin{split}S(\alpha, \beta, \gamma) = \begin{pmatrix} e^{i\alpha/2} & 0 \\ 0 & e^{-i\alpha/2} \end{pmatrix} \begin{pmatrix} \cos{\beta/2} & -\sin{\beta/2} \\ \sin{\beta/2} & \cos{\beta/2} \end{pmatrix} \begin{pmatrix} e^{i\gamma/2} & 0 \\ 0 & e^{-i\gamma/2} \end{pmatrix}.\end{split}$

This factorization then determines the constructions of the $$\mathrm{SU}(2)$$ device acting on the respective optical modes

$S(\alpha, \beta, \gamma) = \left[ R(\alpha/2) \otimes R(-\alpha/2) \right] \, BS(\beta/2) \, \left[ R(\gamma/2) \otimes R(-\gamma/2) \right].$